

Schalltechnische Untersuchung zum Bebauungsplan 189/I der Stadt Leverkusen "Rheindorf - Elbestraße / Masurenstraße"

Bericht VL 7173-3 vom 22.09.2015

Auftraggeber: Schüßler-Plan

Ingenieursgesellschaft mbH Venloer Straße 301-303

50823 Köln

Bericht-Nr.: VL 7173-3

Datum: 22.09.2015

Niederlassung: Düsseldorf

Ansprechpartner/in: Herr Jakubeit

Peutz Consult GmbH Beratende Ingenieure VBI

Messstelle nach § 26 BImSchG zur Ermittlung der Emissionen und Immissionen von Geräuschen und Erschütterungen

VMPA anerkannte Schallschutzprüfstelle nach DIN 4109

Leitung:

Dipl.-Phys. Axel Hübel

Dipl.-Ing. Heiko Kremer-Bertram Staatlich anerkannter Sachverständiger für Schall- und Wärmeschutz

Dipl.-Ing. Mark Bless

Anschriften:

Kolberger Straße 19 40599 Düsseldorf Tel. +49 211 999 582 60 Fax +49 211 999 582 70 dus@peutz.de

Martener Straße 525 44379 Dortmund Tel. +49 231 725 499 10 Fax +49 231 725 499 19 dortmund@peutz.de

Carmerstraße 5 10623 Berlin Tel. +49 30 310 172 16 Fax +49 30 310 172 40 berlin@peutz.de

Geschäftsführer:

Dipl.-Ing. Gerard Perquin Dr. ir. Martijn Vercammen Dipl.-Ing. Ferry Koopmans AG Düsseldorf HRB Nr. 22586 Ust-IdNr.: DE 119424700

Ust-IdNr.: DE 119424700 Steuer-Nr.: 106/5721/1489

Bankverbindungen:

Stadt-Sparkasse Düsseldorf Konto-Nr.: 220 241 94 BLZ 300 501 10 DE79300501100022024194 BIC: DUSSDEDDXXX

Niederlassungen:

Mook / Nimwegen, NL Zoetermeer / Den Haag, NL Groningen, NL Paris, F Lyon, F Leuven, B Sevilla, E

www.peutz.de

Inhaltsverzeichnis

1	Situation und Aufgabenstellung	3
2	Bearbeitungsgrundlagen, zitierte Normen und Richtlinien	4
3	Richtlinien, rechtliche Grundlagen	5
	 3.1 Beurteilungskriterien gemäß DIN 18005	5 6
4	Verkehrslärmemissionen	9
	4.1 Straßenverkehr	
5	Durchführung der Immissionsberechnungen Verkehrslärm	10
	 5.1 Grundlage	10 10
6	Auswirkungen der Planung im Bestand (Straßenverkehrslärm)	12
7	Nutzung der Kita	13
8	Lärmschutzmaßnahmen	15
0	8.1 Allgemeines 8.2 Aktive Lärmschutzmaßnahmen 8.3 Passive Schallschutzmaßnahmen 8.4 Weitere passive Schallschutzmaßnahmen 7usammenfassung	15 15
.4	7 USAHIHEHIASSUUD	ı۸

1 Situation und Aufgabenstellung

Mit Aufstellung des Bebauungsplanes 189/I "Rheindorf - Elbestraße / Masurenstraße" plant die Stadt Leverkusen, auf dem Gelände zwischen Elbestraße, Masurenstraße, Unstrutstraße und Zschopaustraße Baurecht für die Errichtung von Wohngebäuden und einer Kindertagesstätte zu schaffen. Die bestehende Schulsportanlage soll innerhalb des Plangebiets erhalten werden.

Ein Übersichtslageplan der örtlichen Gegebenheiten ist in Anlage 1 dargestellt.

Aufgrund der zu erwartenden Schallimmissionen der angrenzenden Verkehrswege sind die Verkehrslärmimmissionen zu ermitteln. Zu betrachten sind hierbei die Immissionen an geplanter Wohnbebauung aus Straßen- und Schienenverkehr.

Hierfür werden die Verkehrslärmimmissionen der an das Plangebiet angrenzenden Straßen sowie der Autobahn A 59 und der Bahnlinie Langenfeld - Leverkusen untersucht.

Im Rahmen dieser schalltechnischen Untersuchung sind die auf das Plangebiet einwirkenden Schallimmissionen aus Straßen- und Schienenverkehr zu ermitteln und auf Grundlage der DIN 18005 zu beurteilen. Bei Überschreitung der schalltechnischen Orientierungswerte der DIN 18005 werden Lärmschutzmaßnahmen nach DIN 4109 [2] dimensioniert.

In einem weiteren Untersuchungsschritt werden zur Abwägung der Auswirkungen der Planung im Bestand die Straßenlärmimmissionen für die bestehende sowie zukünftige Situation in Anlehnung an die 16. BImSchV ermittelt und dargestellt. Ein Rechtsanspruch auf Schallschutz wird hierdurch nicht begründet.

Im Rahmen dieser schalltechnischen Untersuchung werden die von der geplanten Kita ausgehenden Schallemissionen durch den Bring- und Holverkehr, des Anlieferverkehrs und der Parkplatznutzung hilfsweise auf Grundlage der TA Lärm als Gewerbelärm berechnet und bewertet.

Die innerhalb des Plangebiets bestehende und im Bebauungsplan weiterhin vorgesehene Sportanlage im Süden des Plangebietes wird ausschließlich als Schulsportanlage genutzt. Die Immissionen einer Sportanlage durch Nutzung im Rahmen des Schulsports werden nach Sportanlagenlärmschutzverordnung (18. BImSchV), bei der Beurteilung nicht berücksichtigt. Somit liegt hier kein Immissionskonflikt vor und die Sportlärmimmissionen werden im Rahmen dieser schalltechnischen Untersuchung nicht weiter untersucht.

Bearbeitungsgrundlagen, zitierte Normen und Richtlinien 2

Γitel	/ Beschreibung / Bemerkung		Kat.	Datum
1]	BlmSchG	Gesetz zum Schutz vor schäd-	G	Aktuelle Fassung
	Bundes-Immissionsschutzgesetz	lichen Umwelteinwirkungen		
		durch Luftverunreinigungen,		
		Geräusche, Erschütterungen		
		und ähnliche Vorgänge		
[2]	DIN 4109	Schallschutz im Hochbau, An-	N	November 1989
		forderungen und Nachweise		
[3]	DIN 18 005, Teil 1	Schallschutz im Städtebau –	N	Juli 2002
		Grundlagen und Hinweise für		
		die Planung		
4]	DIN 18 005, Teil 1, Beiblatt 1	Schallschutz im Städtebau –	N	Mai 1987
		Berechnungsverfahren		
[5]	RLS-90	Eingeführt mit allgemeinem	RIL	1990
	Richtlinien für den Lärmschutz an	Rundschreiben Straßenbau Nr.		
	Straßen	8/1990 vom 10.4.1990		
[6]	Schall03	Bundesgesetzblatt Jahrgang	RdErl.	In Kraft getreten
	Richtlinie zur Berechnung der	2014 Teil I Nr.61. Ausgegeben		am 01.01.2015
	Schallimmissionen von	zu Bonn am 23.12.2014		
	Schienenwegen			
[7]	VLärmSchR 97	Bundesministerium für Ver-	RIL	02.06.1997
	Richtlinien für den Verkehrslärm-	kehr, allgemeines Rund-		
	schutz an Bundesfernstraßen in	schreiben Straßenbau Nr.		
	der Baulast des Bundes	26/1997		
[8]	VDI 2719	Schalldämmung von Fenstern	RIL	01.08.87
		und deren Zusatzeinrichtungen		
9]	Verkehrsuntersuchung Be-	Schüßler-Plan	Р	März 2014
	bauungsplan Masurenstraße /	Ingenieurgesellschaft mbH		
	Neubau Kita in Leverkusen			
[10]	Verkehrsbelastungszahlen für die	BAST Bundesanstalt für	Р	2010
	BAB	Straßenwesen		
111	Zugdaten der Schienenwege	Deutsche Bahn AG	P	07.05.2015

Kategorien:

G V VV Gesetz Verordnung Verwaltungsvorschrift Norm RIL Richtlinie

Lit

Buch, Aufsatz, Bericht Planunterlagen / Betriebsangaben RdErl. Runderlass

3 Richtlinien, rechtliche Grundlagen

3.1 Beurteilungskriterien gemäß DIN 18005

Die anzustrebenden schalltechnischen Orientierungswerte für Verkehrslärm sind in der DIN 18005 "Schallschutz im Städtebau", Beiblatt 1 [4] aufgeführt. Dabei ist die Einhaltung folgender schalltechnischer Orientierungswerte, bezogen auf Verkehrslärm, anzustreben:

Tabelle 3.1: schalltechnische Orientierungswerte nach DIN 18005, Beiblatt 1

Gebietsausweisung	Schalltechnischer Orientierungswert [dB(A)]					
	Tag	Nacht				
Reine Wohngebiete (WR)	50	40				
Allgemeine Wohngebiete (WA)	55	45				
Dorfgebiete (MD) und Mischgebiete (MI)	60	50				
Kerngebiete (MK) und Gewerbegebiete (GE)	65	55				

In Beiblatt 1 zu DIN 18005, Teil 1 heißt es zu der Problematik der Überschreitung der schalltechnischen Orientierungswerte:

"In vorbelasteten Bereichen, insbesondere bei vorhandener Bebauung, bestehenden Verkehrswegen und Gemengelagen, lassen sich sie Orientierungswerte oft nicht einhalten. Wo im Rahmen einer Abwägung mit plausibler Begründung von den Orientierungswerten abgewichen werden soll, sollte möglichst ein Ausgleich durch andere geeignete Maßnahmen (z.B. geeignete Gebäudeanordnung und Grundrissgestaltung, bauliche Schallschutzmaßnahmen, insbesondere für Schlafräume) vorgesehen und planungsrechtlich abgesichert werden."

3.2 Beurteilungsgrundlagen gemäß 16. BlmSchV

Die gemäß § 43 BlmSchG erlassene Rechtsverordnung, Verkehrslärmschutzverordnung - 16. BlmSchV. legt den Anwendungsbereich, die Immissionsgrenzwerte in Abhängigkeit vom Grad der Schutzbedürftigkeit sowie das Verfahren zur Berechnung des Beurteilungspegels fest.

Im § 1, Anwendungsbereich, heißt es hierzu (Zitat):

(1) Die Verordnung gilt für den Bau oder die wesentliche Änderung von öffentlichen Straßen sowie von Schienenwegen der Eisenbahnen und Straßenbahnen (Straßen und Schienenwege).

VL 7173-3 22.09.2015

(2) Die Änderung ist wesentlich, wenn

- eine Straße um einen oder mehrere durchgehende Fahrstreifen für den Kraftfahrzeugverkehr oder ein Schienenweg um ein oder mehrere durchgehende Gleise baulich erweitert wird oder
- durch einen erheblichen baulichen Eingriff der Beurteilungspegel des von dem zu ändernden Verkehrsweg ausgehenden Verkehrslärm um mindestens 3 Dezibel (A) oder auf mindestens 70 Dezibel (A) am Tage oder mindestens 60 Dezibel (A) in der Nacht erhöht wird.

Eine Änderung ist auch wesentlich, wenn der Beurteilungspegel des von dem zu ändernden Verkehrsweg ausgehenden Verkehrslärms von mindestens 70 Dezibel (A) am Tage oder 60 Dezibel (A) in der Nacht durch einen erheblichen baulichen Eingriff erhöht wird; dies gilt nicht in Gewerbegebieten.

Ende Zitat § 1 der 16. BImSchV.

Die einzuhaltenden Immissionsgrenzwerte gemäß § 2 der 16. BlmSchV sind in der nachfolgenden Tabelle 3.2 dargestellt.

Tabelle 3.2: Immissionsgrenzwerte der 16. BImSchV

Gebietsausweisung	Immissionsgrenzwert [dB(A)]			
	Tag	Nacht		
Krankenhäuser, Schulen, Kurheime und Altenheime	57	47		
Reine Wohngebiete und allgemeine Wohngebiete, Kleinsiedlungsgebiete	59	49		
Kerngebiete, Dorfgebiete, Mischgebiete *	64	54		
Gewerbegebiete	69	59		

^{*} Bebauungen im Außenbereich werden wie Mischgebiete betrachtet (vgl. § 2 der 16. BImSchV)

Erforderlichenfalls sind zur Einhaltung der Immissionsgrenzwerte gemäß der 16. BImSchV aktive Schallschutzmaßnahmen, z.B. in Form von Lärmschutzwänden oder -wällen, vorzusehen.

3.3 Beurteilungskriterien gemäß TA Lärm

Gemäß der Anforderungen der TA Lärm sind die Immissionsrichtwerte aus den Geräuschen gewerblicher Anlagen einzuhalten. Gewerbelärmimmissionen sind zu messen bzw. zu berechnen in einem Abstand von 0,5 m vor dem geöffneten Fenster der nächstgelegenen Wohn- und Aufenthaltsräume.

Gemäß TA Lärm sind die in der nachfolgenden Tabelle 3.3 aufgeführten Immissionsrichtwerte einzuhalten.

Tabelle 3.3: Immissionsrichtwerte der TA Lärm

Gebietsausweisung	Immissionsrichtwert [dB(A)]			
	Tag	Nacht		
Kurgebiete, Krankenhäuser und Pflegeanstalten	45	35		
Reine Wohngebiete (WR)	50	35		
Allgemeine Wohngebiete und Kleinsiedlungsgebiete (WA)	55	40		
Kerngebiete, Dorfgebiete und Mischgebiete (MI)	60	45		
Gewerbegebiete (GE)	65	50		
Industriegebiete (GI)	70	70		

Geräuschspitzen

Einzelne Impulsspitzen dürfen den Immissionsrichtwert zum Zeitraum des Tages um nicht mehr als 30 dB(A) und zum Zeitraum der Nacht um nicht mehr als 20 dB(A) überschreiten.

Ruhezeiten

Bei Wohngebieten ist den auftretenden anteiligen Schallimmissionen während der Ruhezeiten (Zeiten mit erhöhter Empfindlichkeit: werktags von 06:00 bis 07:00 Uhr und von 20:00 bis 22:00 Uhr) ein Zuschlag von 6 dB(A) zuzurechnen.

Seltene Ereignisse

Bei seltenen Ereignissen betragen die Immissionsrichtwerte für Immissionsorte außerhalb von Gebäuden tags 70 dB(A) und nachts 55 dB(A).

Einzelne kurzzeitige Geräuschspitzen dürfen diese Werte

 in Gewerbegebieten am Tag um nicht mehr als 25 dB(A) und in der Nacht um nicht mehr als 15 dB(A),

VL 7173-3 22.09.2015

• in Kern- und Wohngebieten am Tag um nicht mehr als 20 dB(A) und in der Nacht um nicht mehr als 10 dB(A) überschreiten.

<u>Verkehrsgeräusche</u>

Verkehrsgeräusche auf öffentlichen Verkehrsflächen in einem Abstand von bis zu 500 m von dem Betriebsgrundstück sind soweit wie möglich zu vermindern, soweit

- sie den Beurteilungspegel der Verkehrsgeräusche rechnerisch um mindestens 3 dB(A) erhöhen,
- · keine Vermischung mit dem übrigen Verkehr erfolgt ist und
- die Immissionsgrenzwerte der 16. BImSchV erstmals oder weitergehend überschritten werden.

Der Beurteilungspegel für den Straßenverkehr auf öffentlichen Verkehrsflächen ist zu berechnen nach den Richtlinien für den Lärmschutz an Straßen – Ausgabe 1990 – (RLS 90).

3.4 Beurteilungskriterien gemäß 18. BlmSchV für Sportlärm

Die Beurteilung von Sportlärm ist in der 18. Verordnung zur Durchführung des Bundesimmissionsschutzgesetzes (Sportanlagenlärmschutzverordnung - 18. BImSchV vom 18.07.1991) festgelegt.

Die zuständige Behörde soll von einer Festsetzung von Betriebszeiten absehen, soweit der Betrieb einer Sportanlage dem Schulsport oder der Durchführung von Sportstudiengängen an Hochschulen dient. Dient die Anlage auch der allgemeinen Sportausübung, sind bei der Ermittlung der Geräuschimmissionen die dem Schulsport (...) zuzurechnenden Teilzeiten nach Nummer 1.3.2.3 des Anhangs außer Betracht zu lassen; die Beurteilungszeit wird um die dem Schulsport (...) tatsächlich zuzurechnenden Teilzeiten verringert.

4 Verkehrslärmemissionen

4.1 Straßenverkehr

Die Emissionspegel des Straßenverkehrs wurden auf Grundlage der zur Verfügung gestellten Verkehrsbelastungszahlen für die Masurenstraße und die Elbestraße entsprechend den Vorgaben der RLS-90 [5] ermittelt. Für die Unstrutstraße und die Zschopaustraße wurde eine Verkehrsbelastung von DTV = 1000 Kfz/24h bzw. DTV = 500 Kfz/24h mit einem Lkw-Anteil von 2% abgeschätzt und bei der Verkehrslärmberechnung berücksichtigt.

Die Verkehrsmengen für die nördlich gelegene BAB 59 wurden gemäß der Straßenverkehrszählung 2010 [10] berücksichtigt.

Zusätzlich wurden gemäß der Verkehrsuntersuchung [9] für den durch das Bauvorhaben (Wohnen und Kita) verursachten Zusatzverkehr von 185 Kfz-Fahrten (Ziel- und Quellverkehr) berücksichtigt und bei der Bewertung der Auswirkung der Planung im Bestand gesondert bewertet.

Der Zusatzverkehr der Kita (185 KFZ-Fahrten) wird zusätzlich nochmals gesondert in einem weiteren Untersuchungsschritt auf Grundlage der TA-Lärm berechnet und bewertet.

Die Berechnung der Emissionspegel ist in Anlage 2 dokumentiert.

4.2 Schienenverkehr

Die Emissionspegel des Schienenverkehrs wurden auf Grundlage der von der Deutschen Bahn AG zur Verfügung gestellten Zugdaten entsprechend den Vorgaben der 2015 gültigen Schall 03 [6] ermittelt. Die zugrunde gelegten Zugdaten berücksichtigen die Ausbauplanung zum RRX und sind Prognosedaten für das Jahr 2025. Hiermit ergibt sich eine geringfügig höhere Emission aus Schienenverkehrslärm als in der dreigleisigen Bestandssituation. Die Berechnungen erfolgen mit Berücksichtigung eines aktiven Schallschutzes an der Bahntrasse gemäß dem aktuellen Stand des Planfeststellungsverfahrens mit Stand vom 15.06.2015. Bereits heute ist eine Schallschutzwand vorhanden mit sicherlich ähnlichen Wirkungen.

Die Berechnungen der Emissionspegel gemäß Schall 03-2012 sind in Anlage 3 dokumentiert.

5 Durchführung der Immissionsberechnungen Verkehrslärm

5.1 Grundlage

Die Immissionsberechnungen wurden gesondert für Straßen- und Schienenverkehrslärm an den im Lageplan der Anlage 4 gekennzeichneten Immissionsorten, getrennt für den Tages- und Nachtzeitraum für bis zu fünf Geschosse durchgeführt. Anschließend wurden die Teilergebnisse als Gesamtverkehrslärmbelastung aufsummiert.

Die abschirmende und reflektierende Wirkung der bestehenden Gebäude wurde, im Gegensatz zur geplanten Bebauung bei der Berechnung berücksichtigt.

5.2 Ergebnisse und Beurteilung der Immissionsberechnungen

5.2.1 Straßenverkehrslärm

Die Berechnungsergebnisse der Straßenverkehrsimmissionen an den geplanten Gebäuden sind als Einzelpunktberechnung in der Anlage 5 dargestellt. Die Immissionsorte sind im Lageplan der Anlage 4 wiedergegeben.

Aus Straßenverkehrsimmissionen ergeben sich Beurteilungspegel von 59,1 dB(A) zum Tageszeitraum und bis zu 50,4 dB(A) nachts. Diese Beurteilungspegel ergeben sich an den zur Masurenstraße nächstgelegenen Fassaden (Immissionsort 26). In der Ergebnistabelle der Anlage 5 sind die Beurteilungspegel mit Überschreitung der schalltechnischen Orientierungswerte farbig gekennzeichnet.

5.2.2 Schienenverkehrslärm

Die Berechnungsergebnisse Schienenverkehrslärm sind ebenfalls in der Tabelle der Anlage 5 für die in Anlage 4 dargestellten Immissionsorte wiedergegeben.

Aus Schienenverkehrslärm ergeben sich die höchsten Beurteilungspegel von 54,3 dB(A) / 50,2 dB(A) Tag / Nacht ebenfalls am Immissionsort 26.

5.2.3 Gesamtverkehrslärm (Straße und Schiene)

Die Ergebnisse der Berechnungen der Gesamtimmissionen aus Verkehrslärm an geplanten Gebäuden sind in Anlage 5 für die in Anlage 4 dargestellten Einzelpunkte aus den Teilbeurteilungspegeln aus Straßen- und Schienenlärm berechnet.

Überschreitungen der angestrebten schalltechnischen Orientierungswerte von 55 dB(A) tagsüber treten an den Straßen nahen und Straßen zugewandten Fassaden auf. Die maximale Überschreitung des schalltechnischen Orientierungswertes ergibt sich am Immissionsort 26 mit 5,0 dB(A) tags.

Nachts ist der angestrebte schalltechnische Orientierungswert an fast allen untersuchten Fassaden der geplanten Wohngebäude überschritten. Die Überschreitung liegt an einer Vielzahl von Fassaden im Bereich von 2 bis 3 dB(A). Die maximale Überschreitung ergibt sich am Immissionsort 26 im 2. OG mit 7,8 dB(A).

Insgesamt ergeben sich in den Obergeschossen höhere Beurteilungspegel als im Erdgeschoss. Wie die Isophonenberechnung für die Freibereiche zum Tageszeitraum (Anlage 7) h = 2,0 m über Gelände zeigt, ergeben sich hier nur im Nahbereich der Straße Beurteilungspegel von größer 60 dB(A). Systembedingt ergeben sich bei Isophonenberechnungen höhere Beurteilungspegel als bei den Einzelpunktberechnungen an den Fassaden. Nach Fertigstellung aller Gebäude ergeben sich insbesondere im Kernbereich der geplanten Wohnnutzung aufgrund der Gebäudeabschirmung, die hier nicht berücksichtigt wurde, geringere Beurteilungspegel in den Freibereichen.

6 Auswirkungen der Planung im Bestand (Straßenverkehrslärm)

Zusätzlich zu den Berechnungen der auftretenden Beurteilungspegel innerhalb des Plangebietes wurden die Auswirkungen der Planung im Umfeld berechnet. Hierfür wurden in einem separaten Rechenschritt die an der angrenzenden bestehenden Wohnbebauung auftretenden Beurteilungspegel aus Straßenverkehr in Anlehnung an die 16.BImSchV ohne und mit der geplanten Bebauung berechnet und verglichen. Hierbei wurde der durch das Planvorhaben induzierte Mehrverkehr für die zukünftige Nutzung berücksichtigt.

Die Berechnungsergebnisse dienen nur als Hilfestellung bei der Abwägung im Rahmen des Bebauungsplanverfahrens. Ein Anspruch auf Schallschutz wird hierdurch nicht begründet.

Die Berechnung erfolgt für die im Lageplan der Anlage 4 dargestellten Immissionsorte 51 bis 60 außerhalb des Plangebiets. Wie die Berechnungsergebnisse der Anlage 10 zeigen, ergeben sich an den angrenzenden Gebäuden maximale Erhöhungen der Beurteilungspegel um bis zu 1,3 dB(A) zum Tageszeitraum und 1,0 dB(A) zum Nachtzeitraum am Immissionsort 60. An diesem Immissionsort werden die Immissionsgrenzwerte der 16.BImSchV für Wohngebiete jedoch deutlich eingehalten. Die maximale Pegelerhöhung bei gleichzeitiger Überschreitung der Immissionsgrenzwert liegt bei 0,1 dB(A) Tag am Immissionsort 53 und 0,4 dB(A) an Immissionsort 52 zum Nachtzeitraum.

Eine Pegeländerung des Beurteilungspegels in dieser Größenordnung von kleiner 1 dB(A) kann von der menschlichen Wahrnehmung nicht differenziert werden. Jedoch kann sich der Höreindruck der Verkehrslärmgeräusche ändern, was aber nicht direkt mit einer Erhöhung der Verkehrslärmbelastung gleichzusetzen ist. Im vorliegenden Fall ist die geringe Erhöhung des Verkehrslärms als nicht relevant einzustufen.

7 Nutzung der Kita

Im Rahmen der Verkehrslärmberechnung wurde der Zusatzverkehr durch die Nutzung der Kita (185 Kfz-Fahrten) mit berücksichtigt. Die Nutzung der Kita unterliegt formal nicht den Regelungen der TA-Lärm. In Ermangelung anderer Richtlinien wird die TA-Lärm jedoch hilfsweise für die Berechnung und Beurteilung der Emissionen und Immissionen um Umfeld herangezogen. Geräusche durch Kinderspielen bleiben hiervon jedoch unberührt.

Für die Kindertagesstätte wird von 8 Gruppen mit maximal je 25 Kindern ausgegangen. Dies sind in der Summe 200 Kinder.

Im Bereich der Kita ist ein Mitarbeiter Stellplatz mit 20 Stellplätzen geplant.

Gemäß der Verkehrsuntersuchung [9] ergibt sich werktäglich ein Fahraufkommen durch motorisierten Verkehr von:

Hol- und Bringverkehr
 Beschäftigte
 Wirtschaftsverkehr
 147 Kfz-Fahrten
 35 Kfz-Fahrten
 35 Kfz-Fahrten

Somit ergeben sich je 93 Kfz-Fahrten im Ziel- und Quellverkehr.

Im Lageplan der Anlage 9 ist die Lage der Ersatzschallquellen wiedergegeben.

Im Rahmen der Immissionsprognose wurde für den Mitarbeiter Parkplatz 36 Fahr- und Parkvorgänge inkl. Park-Suchverkehr mit einer Schallleistung von $L_{WAr} = 75,0$ dB(A) im Zeitraum von 7.00 Uhr bis 20.00 Uhr berücksichtigt.

Im Bereich der öffentlichen Straße wurden zusätzlich, insgesamt 185 Kfz-Fahrten, davon 3 Lkw-Fahrten mit einer Schallleistung von $L_{WAr} = 61,0 \text{ dB(A)/m}$ berücksichtigt.

Für die Belieferung der Kita wurden drei Anlieferungen je Tag mit einem Emissionsansatz entsprechend der Anlieferung mittels Rollcontainer (5 Container je Lkw) berücksichtigt. Bezogen auf die Nutzungszeit zwischen 7.00 Uhr und 20.00 Uhr, wurde hierfür eine Schallleistung von $L_{WAr} = 81,6 \ dB(A)$ im Straßenrandbereich berücksichtigt.

Als maximales Schallereignis wird das Verladen der Rollcontainer mit einer Schallleistung von $L_{WAt.max} = 110 \text{ dB}(A)$ berücksichtigt.

Die Berechnungen der Beurteilungspegel erfolgt entsprechend der TA-Lärm anhand der Rechenvorschriften der DIN ISO 9613-2

VL 7173-3 22.09.2015

Wie die Berechnungsergebnisse der Anlage 8 zeigen, werden mit Beurteilungspegeln von bis zu 44 dB(A) tags sowohl die Immissionsrichtwerte der TA-Lärm als auch die kurzzeitig zulässigen Maximalpegel deutlich eingehalten.

Unter Berücksichtigung der oben aufgeführten Emissionsansätze ergibt sich hier kein Immissionskonflikt.

8 Lärmschutzmaßnahmen

8.1 Allgemeines

Zum Schutz gegen Lärm ist grundsätzlich eine Vielzahl von Maßnahmen möglich. Diese können sich sowohl auf die eigentliche Schallquelle, auf den Übertragungsweg zwischen Schallquelle und Empfänger, als auch auf den Bereich des eigentlichen Empfängers beziehen.

Bei Lärmschutzmaßnahmen wird zwischen aktiven und passiven Maßnahmen unterschieden, wobei sich aktive Maßnahmen auf die eigentliche Schallquelle bzw. den Schallausbreitungsweg beziehen und passive Maßnahmen auf den Bereich des Empfängers beschränkt sind.

8.2 Aktive Lärmschutzmaßnahmen

Aufgrund der geringen Überschreitung der Beurteilungspegel zum Tageszeitraum werden hier keine aktiven Schallschutzmaßnahmen empfohlen und untersucht. An der Bahntrasse und entlang der A59 sind Schallschutzmaßnahmen vorhanden. Ein im Zuge der RRX-Planung vorgesehener aktiver Schallschutz wurde berücksichtigt.

8.3 Passive Schallschutzmaßnahmen

Zum Schutz der Empfängerseite vor erhöhten Schallimmissionen sind verschiedene passive Schallschutzmaßnahmen möglich. Dies sind z.B.:

- · Akustisch günstige Orientierung der Gebäude
- · Einbau schalldämmender Fenster
- Erhöhung der Schalldämmung der Fassade
- Akustisch günstige Ausbildung bzw. Anordnung der Freibereiche (Terrassen, Balkone)
- Erhöhung der Schallabsorption in lärmempfindlichen Räumen
- Ausschluss von schützenswerten Nutzungen hinter lauten Fassaden

Erläuterungen zu Außenlärmpegeln und Lärmpegelbereichen

Zur Festsetzung von passiven Lärmschutzmaßnahmen gemäß DIN 4109 [2] sind die so genannten "maßgeblichen Außenlärmpegel", bezogen auf den Zeitraum des Tages (6 Uhr bis 22 Uhr), heranzuziehen. Hierbei unterscheiden sich die maßgeblichen Außenlärmpegel bei Verkehrslärm von den berechneten Beurteilungspegeln zum Zeitraum des Tages durch einen Zuschlag von 3 dB(A). Die so berechneten Außenlärmpegel und zugehörigen Lärmpegelbereiche sind im Anlage 5 für die einzelnen Immissionsorte aufgeführt und im Lageplan der Anlage 6 für alle Fassaden gekennzeichnet. Zusätzlich ist eine Abgrenzungsisophone im Lageplan der Anlage 6 dargestellt.

Die maßgeblichen Außenlärmpegel werden nach DIN 4109 Lärmpegelbereichen mit einer Bereichsbreite von 5 dB zugeordnet. In Abhängigkeit von diesen Lärmpegelbereichen ergeben sich dann im späteren bauaufsichtlichen Verfahren die individuellen Anforderungen an die Luftschalldämmung der Außenbauteile.

Je nach Abstand zur Masurenstraße liegen unterschiedliche Differenzen zwischen Tag- und Nachtpegel vor. In der Summe aus Straßen- und Schienenlärm ist es tags zwischen 4 und 7 dB(A) lauter als nachts. Eine gesonderte Betrachtung der Nachtpegel für die Anwendung der DIN 4109 (oftmals an Bahntrassen) ist hier nicht erforderlich.

Erläuterungen zu schalltechnischen Anforderungen an Außenbauteile

In der Tabelle 8 der DIN 4109 ist eine Staffelung der schalltechnischen Anforderung an die Dämmung der Außenbauteile von Aufenthaltsräumen in Abhängigkeit vom Außenpegel bzw. dem Lärmpegelbereich wiedergegeben.

Hinweis: Diese Zuordnung gilt für ein Verhältnis von Gesamtfläche des Außenbauteiles (Fassade) zur Grundfläche des Aufenthaltsraumes von 0,8. Bei anderen baulichen Gegebenheiten ergeben sich etwas abweichende Verhältnisse.

Diese Tabellen 8 und 9 der DIN 4109 sind in Anlage 11 dargestellt. In der Spalte 4 der Tabelle 8 sind als Raumarten "Aufenthaltsräume in Wohnungen" angegeben.

Im Lageplan der Anlage 6 sind die nach DIN 4109 ermittelten maßgeblichen Außenlärmpegel und die zugehörigen Lärmpegelbereiche aufgeführt.

Anforderungen an Wände / Fenster

In den Spalten 3 bis 5 der o.g. Tabelle 8 der DIN 4109 (Anlage 11) wird die resultierende Schalldämmung des Gesamtaußenbauteiles (Wand einschließlich Fenster etc.) eingeführt. Abhängig von den Flächenverhältnissen Wand / Fenster und der tatsächlichen Schall-

VL 7173-3 22.09.2015

dämmung der Außenwand sowie der Größe und der Nutzung des Raumes kann dann im späteren bauaufsichtlichen Verfahren das erforderliche Schalldämmmaß des Fensters berechnet werden. Durch dieses Verfahren kann eine Überdimensionierung der Fenster etc. vermieden werden, indem den individuellen Gegebenheiten der Gebäudekonstruktion Rechnung getragen wird.

Geht man von üblichen Flächenverhältnissen von maximal 40 % Fenster zu 60 % Wandfläche aus, so können die Schallschutzklassen der Fenster abgeschätzt werden. Hiernach ergeben sich für Wohnräume die in der nachfolgenden Tabelle 8.1 aufgeführten Schalldämmwerte jeweils für die Wand und für das Fenster:

Tabelle 8.1: Abgeschätzte Schalldämmwerte der Außenbauteile nach DIN 4109 mit max. 40 % Fensterfläche (gültig für Verhältnis 0,8 – siehe oben) für Wohnräume

Lärmpegelbereich	erf. R′ _{w ,res}	R´w ,Wand	R´w ,Fenster	Schallschutzklasse der Fenster
II	30 dB	35 dB	25 dB	1
III	35 dB	40 dB	30 dB	2
IV	40 dB	45 dB	35 dB	3

8.4 Weitere passive Schallschutzmaßnahmen

Ein weiterer wichtiger Aspekt im Zusammenhang mit schalldämmenden Fenstern ist die Lüftung. Bei Fenstern älterer Bauart erfolgt die Lüftung in der Regel kontinuierlich über die Fugen. Da bei modernen, den heutigen Wärmeschutzanforderungen genügenden Fenstern die Fugen durch Mehrfachdichtungen wesentlich besser abgedichtet sind, ist die sogenannte Fugenlüftung nicht mehr wirksam.

Bei schalldämmenden Fenstern tritt dieses Problem verstärkt auf, da an ihre Dichtigkeit erhöhte Anforderungen gestellt werden. Deshalb sollte bei allen Fassaden mit Anforderungen an die Fassadenschalldämmung entsprechen Lärmpegelbereich LPB III für Schlafräume und Kinderzimmern, insbesondere aufgrund der auftretenden Spitzenpegel bei Vorbeifahrten von Lkw eine schalldämmende Lüftung vorgesehen werden, um auch bei geschlossenen Fenstern einen Luftaustausch zu ermöglichen.

Bei der Auswahl der schalldämmenden Lüfter ist darauf zu achten, dass die Schalldämmung der Fenster durch die Lüftung nicht verschlechtert wird. Zweckmäßigerweise werden deshalb integrierte Lösungen, bestehend aus einem Fenster und einem dazugehörenden schalldämmenden Lüfter gleicher Schallschutzklasse vorgesehen.

9 Zusammenfassung

Für das Bebauungsplanverfahren zum Bebauungsplan 189/I "Rheindorf - Elbestraße / Masurenstraße" der Stadt Leverkusen wurde eine schalltechnische Untersuchung durchgeführt.

Hierbei wurden die Einwirkungen aus den Geräuschen von Straßen-, Schienenverkehr auf das Grundstück betrachtet und gemäß DIN 18005 bewertet.

Ergebnis der Untersuchungen ist, dass durch die Einwirkungen der Verkehrsgeräusche an den Fassaden der geplanten Wohnbebauung die angestrebten schalltechnischen Orientierungswerte von 55 dB(A) tags und 45 dB(A) nachts überschritten werden.

Als passive Lärmschutzmaßnahmen wurden Lärmpegelbereiche gemäß der DIN 4109 ermittelt. Zusätzlich werden Lüftungseinrichtungen zu Schlafräumen / Kinderzimmern an den zur Masurenstraße orientierten Fassaden der geplanten Gebäude empfohlen.

Durch die Planung und den hierdurch entstehenden Mehrverkehr auf dem angrenzenden Straßennetz ergeben sich geringfügige für die Beurteilung nicht relevante Erhöhungen der Straßenverkehrsimmissionen an der bestehenden Bebauung.

Für die geplante Kita wurden die auftretenden Immissionen durch den neu erzeugten Pkwund Lieferverkehr in Anlehnung an die TA-Lärm berechnete und beurteilt. Wie die Berechnungsergebnisse zeigen, ergibt sich im Einwirkungsbereich der Kita durch Fahr- und Lieferverkehr kein Immissionskonflikt.

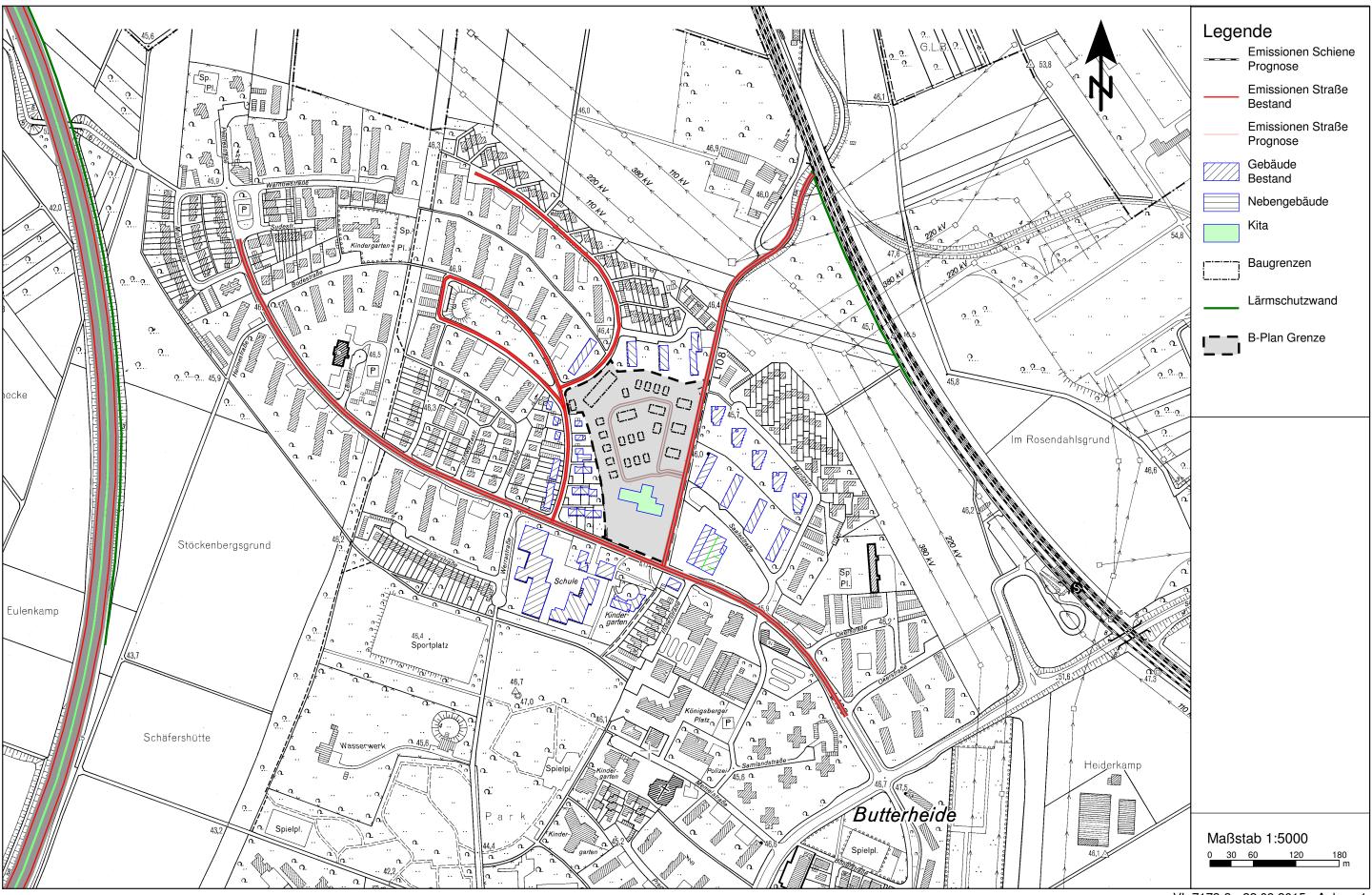
Die Sportanlage im Süden des Plangebietes wird ausschließlich als Schulsportanlage genutzt. Die Immissionen einer Sportanlage durch Nutzung im Rahmen des Schulsports werden nach Sportanlagenlärmschutzverordnung (18. BImSchV), bei der Beurteilung nicht berücksichtigt. Somit liegt hier kein Immissionskonflikt.

Dieser Bericht besteht aus 18 Seiten 11 Anlagen.

Peutz Consult GmbH

ppa Dip -Phys Akel Hübe

VL 7173-3 22.09.2015


Seite 18

<u>Anlagenverzeichnis</u>

Anlage 1	Übersichtslageplan
Anlage 2	Ermittlung der Emissionen aus Straßenverkehr nach RLS-90
Anlage 3	Ermittlung der Emissionen aus Schienenverkehr nach Schall 03
Anlage 4	Lageplan mit Darstellung des Bebauungskonzeptes und der Immissionsorte
Anlage 5	Ergebnis der Verkehrslärmberechnung; Beurteilung nach DIN 18005 / DIN 4109
Anlage 6	Darstellung der Lärmpegelbereiche gemäß DIN 4109 an den Fassaden und als Flächenabgrenzung
Anlage 7	Isophonenlageplan Verkehrslärm für die Freiflächen h = 2,0 m ü. Gelände; ohne Gebäudeabschirmung der Planung
Anlage 8	Ergebnisse der Immissionsberechnung zur Nutzung der Kita
Anlage 9	Lageplan mit Darstellung der Lärmquellen der Kita und der maßgeblichen Immissionsorte
Anlage 10	Auswirkung der Planung auf den Straßenverkehrslärm im Bestand
Anlage 11	Tabellen 8 und 9 der DIN 4109

Berechnung der Emissionspegel für Straßenverkehr gemäß RLS 90

Straßenbezeichnung	: Mas	urenstraß	e (Progi	nose)				Emission	nspegel:
Straßengattung:	Landes-,	Kreisstraß	3e	DTV-Wer	(Kfz/24h)	2750		Tag	Nacht
Verkehrswerte - Kfz/I	h: Tag:	16	5	Nacht:	22				
LKW-Anteil [%]:	Tag:	2,)	Nacht:	2,0		$L_{\rm m}^{25}$	60,1	51,4
Straßenoberfläche:	Aspahltbe	ton, Splittm	astixasp	halt, nicht g	eriffelter Gu	ßasphalt	D_{StrO}	0,0	0,0
Geschwindigkeiten [km/h]:	PKW:	50	LKW	50		D_{v}	-5,7	-5,7
Steigung/Gefälle:	0,0%						D_{Stg}	0,0	0,0
						L _{m,E} [dE	B(A)]	54,5	45,7

Straßenbezeichnung		urenstraß	`	,				Emission	
Straßengattung:	Landes-,	Kreisstral	3e	DTV-Wert	(Kfz/24h):	2250		Tag	Nacht
Verkehrswerte - Kfz/ł	າ: Tag	: 13	5	Nacht:	18				
LKW-Anteil [%]:	Tag	: 2,	0	Nacht:	2,0		$L_{\rm m}^{25}$	59,3	50,5
Straßenoberfläche:	Aspahltbe	eton, Splittn	nastixasp	ohalt, nicht g	eriffelter Gußa	asphalt	D_{StrO}	0,0	0,0
Geschwindigkeiten [l	km/h]:	PKW:	50	LKW:	50		D_{v}	-5,7	-5,7
Steigung/Gefälle:	0,0%						D_{Stg}	0,0	0,0
						L _{m,E} [dE	B(A)]	53,6	44,8

Straßenbezeichnung	Emission	spegel:							
Straßengattung:	Bundesa	autobahn		DTV-Wer	(Kfz/24h):	42900		Tag	Nacht
Verkehrswerte - Kfz/	h: Tag	: 25	74	Nacht:	601				
LKW-Anteil [%]:	Tag	: 7	,0	Nacht:	12,6		$L_{\rm m}^{25}$	73,4	68,2
Straßenoberfläche:	Aspahltbe	eton, Splittr	nastixasp	halt, nicht g	eriffelter Gußa	asphalt	D_{StrO}	0,0	0,0
Geschwindigkeiten	[km/h]:	PKW:	130	LKW	80		D_{v}	2,1	1,6
Steigung/Gefälle:	0,0%						D_{Stg}	0,0	0,0
						$L_{m,E}$ [dB	(A)]	75,4	69,7

Straßenbezeichnung:	: Anw Gemeind	ohnerstra destraße	аве	DTV-Wei	t (Kfz/24h): 250		Emissior Tag	nspegel:
Verkehrswerte - Kfz/h			15	Nacht:	` 3	,		J	
LKW-Anteil [%]:	Tag	: 2	2,0	Nacht:	1,0		$L_{\rm m}^{25}$	49,7	42,0
Straßenoberfläche:	Aspahltbe	eton, Splitt	mastixas	phalt, nicht	geriffelter G	ußasphalt	D_{StrO}	0,0	0,0
Geschwindigkeiten [l	۲m/h]:	PKW:	30	LKW	: 30		D_{v}	-8,0	-8,3
Steigung/Gefälle:	0,0%						D_{Stg}	0,0	0,0
						L _{m,E} [dE	B(A)]	41,7	33,7

Straßenbezeichnung:	Ang	renzendes	Straße	ennetz				Emission	nspegel:
Straßengattung:	Gemeind	destraße		DTV-Wer	t (Kfz/24h	1): 500		Tag	Nacht
Verkehrswerte - Kfz/h:	: Tag	: 30)	Nacht:	6				
LKW-Anteil [%]:	Tag	: 2,	0	Nacht:	2,0		$L_{\rm m}^{25}$	52,7	45,4
Straßenoberfläche:	Aspahltbe	eton, Splittm	astixas	phalt, nicht g	eriffelter G	Bußasphalt	D_{StrO}	0,0	0,0
Geschwindigkeiten [ki	m/h]:	PKW:	30	LKW	: 30)	D_{v}	-8,0	-8,0
Steigung/Gefälle:	0,0%						D_{Stg}	0,0	0,0
						L _{m,E} [di	3(A)]	44,7	37,4

Emissionsberechnungen nach Schall 03

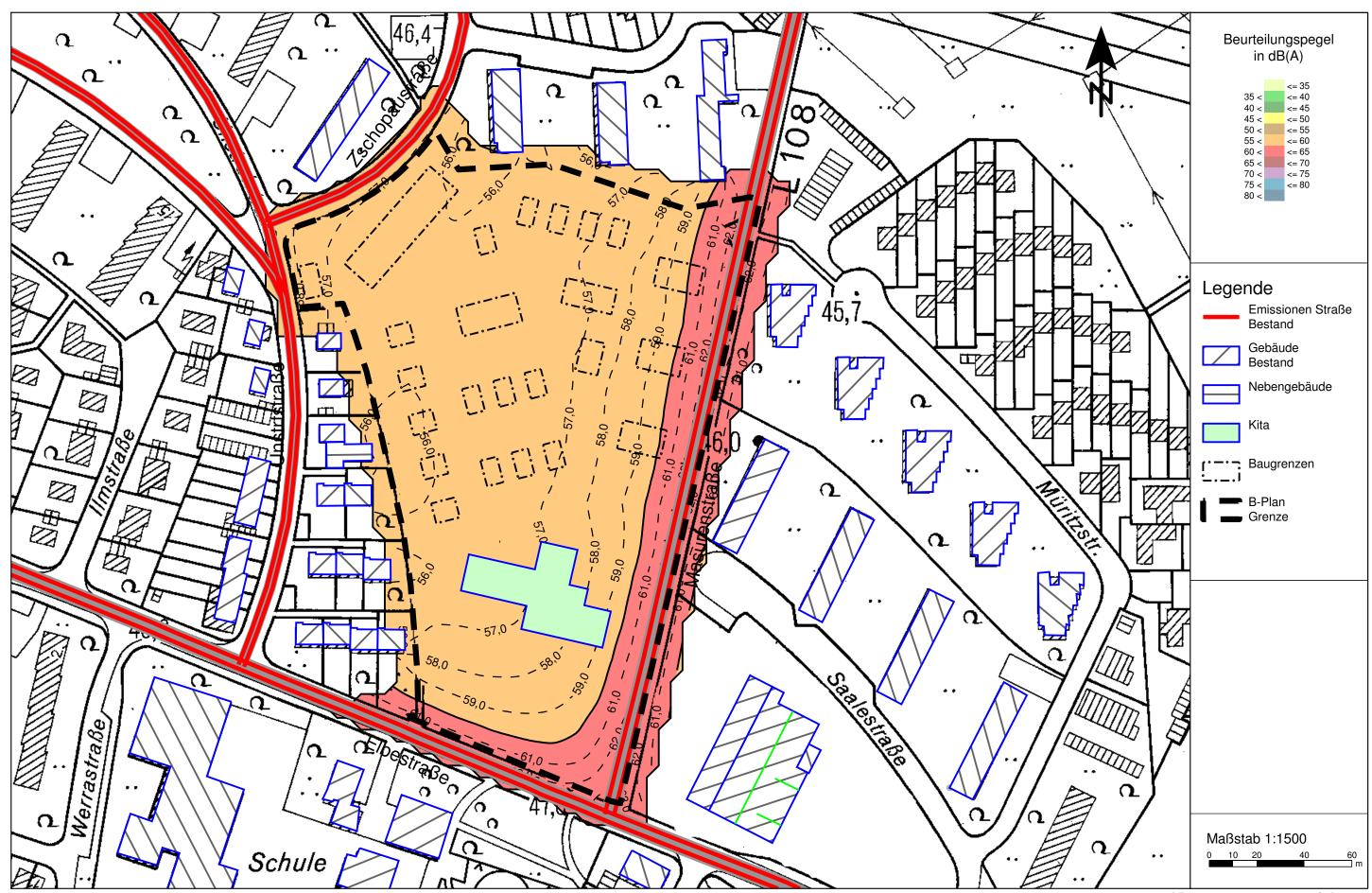
=	-										15/4)1	
	Zugart		l Züge	Geschw.	Länge				sionspeg	gel L'w		
Nr.	Name	tags	nachts		je Zug	Max		tags	1		nachts	
				km/h	m		0 m	4 m	5 m	0 m	4 m	5 m
Stre	cke 2650 Nord	Gleis: 4		Richtung:					Abschn	itt: 1	Km: 16	+000
1	1 x ICE 2 (Typ 1)	1,0	-	200	205	-	64,3	51,5	45,9	-	-	-
2	1 x ICE 3 (Typ 3)	11,0	2,0	200	201	-	76,8	60,8	54,3	72,4	56,4	49,9
3	2 x ICE 3 (Typ 2)	27,0	2,0	200	402	-	83,7	67,7	61,2	75,4	59,4	53,0
4	IC x lang (Typ 33)	15,0	3,0	200	201	-	79,8	62,1	55,7	75,8	58,1	51,7
6	IC / D mittel (Typ 40)	32,0	3,0	200	257	-	85,2	68,4	61,0	78,0	61,2	53,7
5	IC / D lang (Typ 41)	3,0	2,0	200	336	-	76,1	58,3	50,7	77,4	59,5	51,9
7	IC DoSto (Typ 9)	7,0	-	160	151	-	74,6	58,9	49,5	-	-	-
9	2 x DoStoET (Typ 35)	63,0	11,0	160	135	-	83,6	63,8	62,1	79,0	59,2	57,5
19	SGV1, 700m, KV	1,0	1,0	100	696	-	72,6	49,5	30,9	75,6	52,5	33,9
-	Gesamt	160,0	24,0	-	-	-	90,1	72,9	67,1	85,1	67,1	61,5
Stre	cke 2650 Süd	Gleis: 3		Richtung:					Abschn	itt: 2	Km: 0+	710
1	1 x ICE 2 (Typ 1)	1,0	-	200	205	-	64,3	51,5	45,9	-	-	-
2	1 x ICE 3 (Typ 3)	11,0	2,0	200	201	-	76,8	60,8	54,3	72,4	56,4	49,9
3	2 x ICE 3 (Typ 2)	27,0	2,0	200	402	-	83,7	67,7	61,2	75,4	59,4	53,0
4	IC x lang (Typ 33)	15,0	3,0	200	201	-	79,8	62,1	55,7	75,8	58,1	51,7
6	IC / D mittel (Typ 40)	32,0	3,0	200	257	-	85,2	68,4	61,0	78,0	61,2	53,7
5	IC / D lang (Typ 41)	3,0	2,0	200	336	-	76,1	58,3	50,7	77,4	59,5	51,9
7	IC DoSto (Typ 9)	7,0	-	160	151	-	74,6	58,9	49,5	-	-	-
9	2 x DoStoET (Typ 35)	63,0	11,0	160	135	-	83,6	63,8	62,1	79,0	59,2	57,5
19	SGV1, 700m, KV	1,0	1,0	100	696	-	72,6	49,5	30,9	75,6	52,5	33,9
-	Gesamt	160,0	24,0	-	-	-	90,1	72,9	67,1	85,1	67,1	61,5
Stree	cke 2670 Nord	Gleis: 2		Richtung:					Abschn	itt: 3	Km: 16	+000
29	ET4+ET4 (Typ 24)	47,0	12,0	140	135	-	79,3	60,2	57,9	76,4	57,3	55,0
19	SGV1, 700m, KV	2,0	2,0	100	696	-	75,6	52,5	33,9	78,6	55,5	36,9
20	SGV2, 500m, Mix	1,0	1,0	100	508	-	71,2	55,1	30,9	74,2	58,1	33,9
21	SGV4, 350m, Tank	1,0	1,0	100	358	-	69,8	59,9	30,9	72,8	62,9	33,9
-	Gesamt	51,0	16,0	-	-	-	81,6	64,0	57,9	82,1	65,4	55,1
Stree	cke 2670 Süd	Gleis: 1		Richtung:					Abschn	itt: 4	Km: 16	+000
29	ET4+ET4 (Typ 24)	47,0	12,0	140	135	-	79,3	60,2	57,9	76,4	57,3	55,0
19	SGV1, 700m, KV	4,0	1,0	100	696	-	78,6	55,5	36,9	75,6	52,5	33,9
20	SGV2, 500m, Mix	1,0	1,0	100	508	-	71,2	55,1	30,9	74,2	58,1	33,9
21	SGV4, 350m, Tank	1,0	1,0	100	358	-	69,8	59,9	30,9	72,8	62,9	33,9
-	Gesamt	53,0	15,0	-	-	-	82,6	64,3	58,0	81,0	65,2	55,1
			•									

	Immissi	onspunkt		Gebiets-	Schallted	hnischer			Beurteilu	ngspegel			Überschr	eitung des	Maßgebl.	Lärmpegel-
				einstufung	Orientier	ungswert	Sch	iene	Str	аве	Sun	nme	Orientieru	ngswertes	Außenlärm-	bereich
ΙP		Fassaden-	Geschoss												pegel	
		orientierung			Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht		
					dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	WA 1. 6	0	EG	WA	55	45	48,9	45,0	51,2	43,3	53,2	47,2	-	2,2	57	II
		0	1.OG	WA	55	45	50,0	46,1	51,1	43,2	53,6	47,9	-	2,9	57	II
		0	2.OG	WA	55	45	51,2	47,3	50,9	43,0	54,1	48,7	-	3,7	58	II
2	WA 1. 6	S	EG	WA	55	45	43,4	39,6	50,3	43,2	51,1	44,7	-	-	55	I
		S	1.OG	WA	55	45	45,2	41,4	51,6	45,0	52,5	46,5	-	1,5	56	II
		S	2.OG	WA	55	45	47,0	43,2	52,1	45,5	53,2	47,5	-	2,5	57	ll l
3	WA 1. 5	W	EG	WA	55	45	39,4	35,5	50,0	44,3	50,3	44,8	-	-	54	I
		W	1.OG	WA	55	45	39,5	35,6	51,3	45,7	51,6	46,1	-	1,1	55	I
		W	2.OG	WA	55	45	37,9	34,2	52,2	46,6	52,3	46,8	-	1,8	56	II
4	WA 1. 4	0	EG	WA	55	45	48,8	45,0	50,9	43,2	53,0	47,2	-	2,2	56	II
		0	1.OG	WA	55	45	50,0	46,1	50,8	43,1	53,4	47,9	-	2,9	57	II
		0	2.OG	WA	55	45	51,2	47,4	50,6	42,9	53,9	48,7	-	3,7	57	II
5	WA 1. 3	W	EG	WA	55	45	42,0	38,1	51,1	45,6	51,6	46,3	-	1,3	55	I
		W	1.OG	WA	55	45	41,2	37,3	52,0	46,4	52,4	46,9	-	1,9	56	II
		W	2.OG	WA	55	45	30,8	26,8	52,3	46,7	52,3	46,7	-	1,7	56	II
6	WA 1. 2	N	EG	WA	55	45	48,4	44,5	49,7	43,9	52,1	47,2	-	2,2	56	II
		N	1.OG	WA	55	45	48,9	45,0	50,3	44,5	52,7	47,8	-	2,8	56	II
		N	2.OG	WA	55	45	49,6	45,7	50,6	44,7	53,1	48,2	-	3,2	57	II
7	WA 1. 1	W	EG	WA	55	45	42,0	37,9	56,5	49,9	56,7	50,2	1,7	5,2	60	II
		W	1.OG	WA	55	45	39,6	35,4	56,5	49,9	56,6	50,1	1,6	5,1	60	II
		W	2.OG	WA	55	45	33,7	29,9	56,1	49,6	56,1	49,6	1,1	4,6	60	II
8	WA 2. 3	0	EG	WA	55	45	49,2	45,1	51,4	43,6	53,4	47,4	-	2,4	57	II
		0	1.OG	WA	55	45	50,1	46,1	52,0	44,1	54,2	48,2	-	3,2	58	II
		0	2.OG	WA	55	45	51,4	47,5	52,5	44,5	55,0	49,2	-	4,2	58	II
9	WA 2. 3	S	EG	WA	55	45	41,7	38,0	52,5	45,6	52,9	46,3	-	1,3	56	II
		S	1.OG	WA	55	45	43,5	39,8	53,0	46,0	53,5	46,9	-	1,9	57	II
		S	2.OG	WA	55	45	46,3	42,6	53,3	46,2	54,1	47,8	-	2,8	58	II
10	WA 2. 1	N	EG	WA	55	45	47,9	43,9	50,2	44,0	52,2	47,0	-	2,0	56	II
		N	1.OG	WA	55	45	48,7	44,7	50,6	44,5	52,8	47,6	-	2,6	56	II
		N	2.OG	WA	55	45	49,4	45,4	50,8	44,7	53,1	48,0	-	3,0	57	II

	Immissi	onspunkt		Gebiets-	Schallted	chnischer			Beurteilu	ıngspegel			Überschr	eitung des	Maßgebl.	Lärmpegel-
				einstufung	Orientier	ungswert	Sch	iene		аве	Sun	nme	Orientieru	ıngswertes	Außenlärm-	bereich
ΙP		Fassaden-	Geschoss												pegel	
		orientierung			Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht		
					dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
11	WA 2. 4	W	EG	WA	55	45	41,5	37,7	53,0	46,8	53,3	47,3	-	2,3	57	П
		W	1.OG	WA	55	45	39,5	35,7	53,2	47,1	53,4	47,4	-	2,4	57	Ш
		W	2.OG	WA	55	45	37,4	33,7	53,0	47,1	53,2	47,3	-	2,3	57	11
12	WA 2. 6	N	EG	WA	55	45	47,7	43,7	49,0	43,1	51,4	46,4	-	1,4	55	I
		N	1.OG	WA	55	45	48,4	44,3	49,5	43,5	52,0	46,9	-	1,9	55	I
		N	2.OG	WA	55	45	49,3	45,3	49,8	43,7	52,6	47,6	-	2,6	56	П
13	WA 4	S	EG	WA	55	45	44,3	40,4	51,2	45,1	52,0	46,4	-	1,4	55	l
		S	1.OG	WA	55	45	45,9	42,1	51,5	45,3	52,6	47,0	-	2,0	56	11
		S	2.OG	WA	55	45	47,8	44,0	51,8	45,5	53,3	47,8	-	2,8	57	II
		S	3.OG	WA	55	45	49,4	45,5	52,0	45,7	53,9	48,6	-	3,6	57	- 11
14	WA 4	0	EG	WA	55	45	48,9	45,0	49,8	42,8	52,4	47,0	-	2,0	56	Ш
		0	1.OG	WA	55	45	49,8	45,9	50,2	43,1	53,0	47,8	-	2,8	56	Ш
		0	2.OG	WA	55	45	51,3	47,4	50,4	43,3	53,9	48,8	-	3,8	57	II
		0	3.OG	WA	55	45	52,8	48,9	50,7	43,5	54,8	50,0	-	5,0	58	П
15	WA 4	N	EG	WA	55	45	48,2	44,4	51,3	44,9	53,0	47,6	-	2,6	56	Ш
		N	1.OG	WA	55	45	48,7	44,8	51,3	45,0	53,2	47,9	-	2,9	57	Ш
		N	2.OG	WA	55	45	49,4	45,5	51,2	44,9	53,4	48,2	-	3,2	57	II
		N	3.OG	WA	55	45	50,2	46,3	51,0	44,8	53,6	48,6	-	3,6	57	II
16	WA 2. 7	0	EG	WA	55	45	50,6	46,7	49,4	42,9	53,1	48,2	-	3,2	57	II
		0	1.OG	WA	55	45	51,1	47,3	49,9	43,4	53,6	48,8	-	3,8	57	Ш
		0	2.OG	WA	55	45	52,0	48,1	50,2	43,7	54,2	49,5	-	4,5	58	II
17	WA 2. 7	N	EG	WA	55	45	48,1	44,2	48,9	43,2	51,5	46,8	-	1,8	55	I
		N	1.OG	WA	55	45	48,4	44,5	49,6	44,0	52,1	47,3	-	2,3	56	Ш
		N	2.OG	WA	55	45	49,0	45,1	50,1	44,5	52,6	47,8	-	2,8	56	II
18	WA 2. 8	N	EG	WA	55	45	51,1	47,2	46,7	40,8	52,4	48,1	-	3,1	56	11
		N	1.OG	WA	55	45	51,3	47,4	47,8	42,0	52,9	48,5	-	3,5	56	II II
		N	2.OG	WA	55	45	51,7	47,8	48,6	42,8	53,4	49,0	-	4,0	57	II .
19	WA 2. 10	S	EG	WA	55	45	37,6	33,9	53,2	46,8	53,3	47,0	-	2,0	57	11
		S	1.OG	WA	55	45	40,1	36,4	53,4	47,0	53,6	47,3	-	2,3	57	Ш
		S	2.OG	WA	55	45	43,1	39,4	53,4	47,1	53,8	47,7		2,7	57	Ш

	Immiss	ionspunkt		Gebiets-	Schallted	chnischer			Beurteilu	ngspegel			Überschr	eitung des	Maßgebl.	Lärmpegel-
				einstufung	Orientier	ungswert	Sch	iene	Str	аве	Sun	nme	Orientieru	ingswertes	Außenlärm-	bereich
IP		Fassaden-	Geschoss												pegel	
		orientierung			Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht		
					dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
20	WA 2. 11	0	EG	WA	55	45	50,9	46,9	51,4	44,1	54,2	48,8	-	3,8	58	II
		0	1.OG	WA	55	45	51,3	47,4	52,1	44,6	54,7	49,2	-	4,2	58	II
		0	2.OG	WA	55	45	52,1	48,1	52,8	45,2	55,4	49,9	0,4	4,9	59	II
21	WA 5. 1	0	EG	WA	55	45	48,6	44,6	53,1	45,6	54,5	48,1	-	3,1	58	II
		0	1.OG	WA	55	45	49,5	45,4	53,5	45,9	55,0	48,7	-	3,7	58	II
		0	2.OG	WA	55	45	50,9	46,9	53,9	46,2	55,7	49,6	0,7	4,6	59	II
		0	3.OG	WA	55	45	52,9	49,0	54,2	46,4	56,6	50,9	1,6	5,9	60	II
22	WA 5. 1	S	EG	WA	55	45	39,3	35,5	52,7	46,4	52,9	46,7	-	1,7	56	II
		S	1.OG	WA	55	45	41,1	37,4	53,0	46,7	53,3	47,2	-	2,2	57	II
		S	2.OG	WA	55	45	43,2	39,5	53,3	46,9	53,7	47,6	-	2,6	57	II
		S	3.OG	WA	55	45	44,2	40,5	53,6	47,0	54,0	47,9	-	2,9	57	II
23	WA 5. 2	N	EG	WA	55	45	49,3	45,3	50,4	43,4	52,9	47,4	-	2,4	56	II
		N	1.OG	WA	55	45	50,0	46,0	50,9	43,8	53,5	48,0	-	3,0	57	II
		N	2.OG	WA	55	45	51,3	47,3	51,3	44,0	54,3	49,0	-	4,0	58	II
		N	3.OG	WA	55	45	52,8	48,9	51,7	44,3	55,3	50,2	0,3	5,2	59	II
24	WA 5. 2	0	EG	WA	55	45	49,1	45,0	53,3	45,7	54,7	48,4	-	3,4	58	II
		0	1.OG	WA	55	45	50,0	46,0	53,7	46,1	55,3	49,1	0,3	4,1	59	II
		0	2.OG	WA	55	45	51,4	47,4	54,1	46,4	56,0	50,0	1,0	5,0	59	II
		0	3.OG	WA	55	45	52,9	48,9	54,5	46,7	56,8	50,9	1,8	5,9	60	II
25	WA 6. 1	N	EG	WA	55	45	53,5	49,5	53,5	45,1	56,5	50,9	1,5	5,9	60	II
		N	1.OG	WA	55	45	53,8	49,8	54,3	45,8	57,1	51,3	2,1	6,3	61	III
		N	2.OG	WA	55	45	54,2	50,2	54,4	45,9	57,3	51,6	2,3	6,6	61	III
26	WA 6. 1	0	EG	WA	55	45	52,4	48,4	58,9	50,2	59,8	52,4	4,8	7,4	63	III
		0	1.OG	WA	55	45	52,8	48,7	59,1	50,4	60,0	52,6	5,0	7,6	63	III
		0	2.OG	WA	55	45	53,2	49,2	59,0	50,3	60,0	52,8	5,0	7,8	63	III
27	WA 6. 2	N	EG	WA	55	45	50,5	46,5	52,7	44,9	54,7	48,8	-	3,8	58	II
		N	1.OG	WA	55	45	51,0	47,0	53,7	45,7	55,6	49,4	0,6	4,4	59	Ш
		N	2.OG	WA	55	45	51,9	47,8	54,0	46,0	56,1	50,0	1,1	5,0	60	II

	Immissi	onspunkt		Gebiets-	Schallted	hnischer			Beurteilu	ngspegel			Überschr	eitung des	Maßgebl.	Lärmpegel-
				einstufung	Orientier	ungswert	Sch	iene	Str	аßе	Sun	nme	Orientieru	ungswertes	Außenlärm-	bereich
ΙP		Fassaden-	Geschoss												pegel	
		orientierung			Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht		
					dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
28	WA 6. 3	N	EG	WA	55	45	50,5	46,5	55,0	46,6	56,3	49,6	1,3	4,6	60	II
		N	1.OG	WA	55	45	51,0	47,0	55,4	47,0	56,8	50,0	1,8	5,0	60	II
		N	2.OG	WA	55	45	51,7	47,8	55,4	47,1	57,0	50,4	2,0	5,4	60	II
29	WA 6. 3	0	EG	WA	55	45	49,4	45,4	58,8	49,9	59,2	51,2	4,2	6,2	63	III
		0	1.OG	WA	55	45	49,8	45,8	59,0	50,2	59,5	51,5	4,5	6,5	63	Ш
		0	2.OG	WA	55	45	50,6	46,6	58,9	50,1	59,5	51,7	4,5	6,7	63	Ш
30	WA 6. 3	S	EG	WA	55	45	36,2	32,2	54,1	47,1	54,2	47,2	-	2,2	58	II
		S	1.OG	WA	55	45	37,3	33,6	55,0	47,7	55,1	47,9	0,1	2,9	59	II
		S	2.OG	WA	55	45	39,0	35,3	55,3	48,0	55,4	48,2	0,4	3,2	59	II
31	WA 3. 1	SO	EG	WA	55	45	48,1	44,2	48,8	42,5	51,5	46,4	-	1,4	55	I
		so	1.OG	WA	55	45	48,7	44,8	49,5	43,2	52,1	47,1	-	2,1	56	II
		so	2.OG	WA	55	45	49,3	45,4	50,0	43,8	52,7	47,7	-	2,7	56	II
		so	3.OG	WA	55	45	50,2	46,2	50,4	44,1	53,3	48,3	-	3,3	57	II
		so	4.OG	WA	55	45	51,2	47,2	47,8	39,9	52,8	47,9	-	2,9	56	II
32	WA 3. 1	SO	EG	WA	55	45	47,9	44,0	48,5	42,0	51,2	46,1	-	1,1	55	I
		so	1.OG	WA	55	45	48,6	44,7	49,2	42,6	51,9	46,8	-	1,8	55	I
		so	2.OG	WA	55	45	49,4	45,5	49,5	43,0	52,5	47,4	-	2,4	56	II
		so	3.OG	WA	55	45	50,2	46,3	49,8	43,3	53,0	48,1	-	3,1	56	II
		so	4.OG	WA	55	45	50,8	46,8	47,6	39,5	52,5	47,6	-	2,6	56	II
33	WA 3. 1	SW	EG	WA	55	45	35,0	31,0	52,3	46,6	52,4	46,7	-	1,7	56	II
		SW	1.OG	WA	55	45	33,4	29,6	52,9	47,1	53,0	47,1	-	2,1	56	II
		sw	2.OG	WA	55	45	33,4	29,6	53,2	47,3	53,2	47,4	-	2,4	57	II
		SW	3.OG	WA	55	45	0,0	0,0	53,3	47,4	53,3	47,4	-	2,4	57	II
		SW	4.OG	WA	55	45	0,0	0,0	53,3	47,4	53,3	47,4	-	2,4	57	П
34	WA 3. 1	NW	EG	WA	55	45	49,4	45,5	52,5	46,8	54,2	49,2	-	4,2	58	II
		NW	1.OG	WA	55	45	49,6	45,7	53,1	47,3	54,7	49,6	-	4,6	58	II
		NW	2.OG	WA	55	45	49,9	46,0	53,4	47,5	55,0	49,8	-	4,8	58	II
		NW	3.OG	WA	55	45	48,7	44,9	53,3	47,4	54,6	49,4	-	4,4	58	II
		NW	4.OG	WA	55	45	48,8	45,0	53,3	47,4	54,6	49,4	-	4,4	58	II

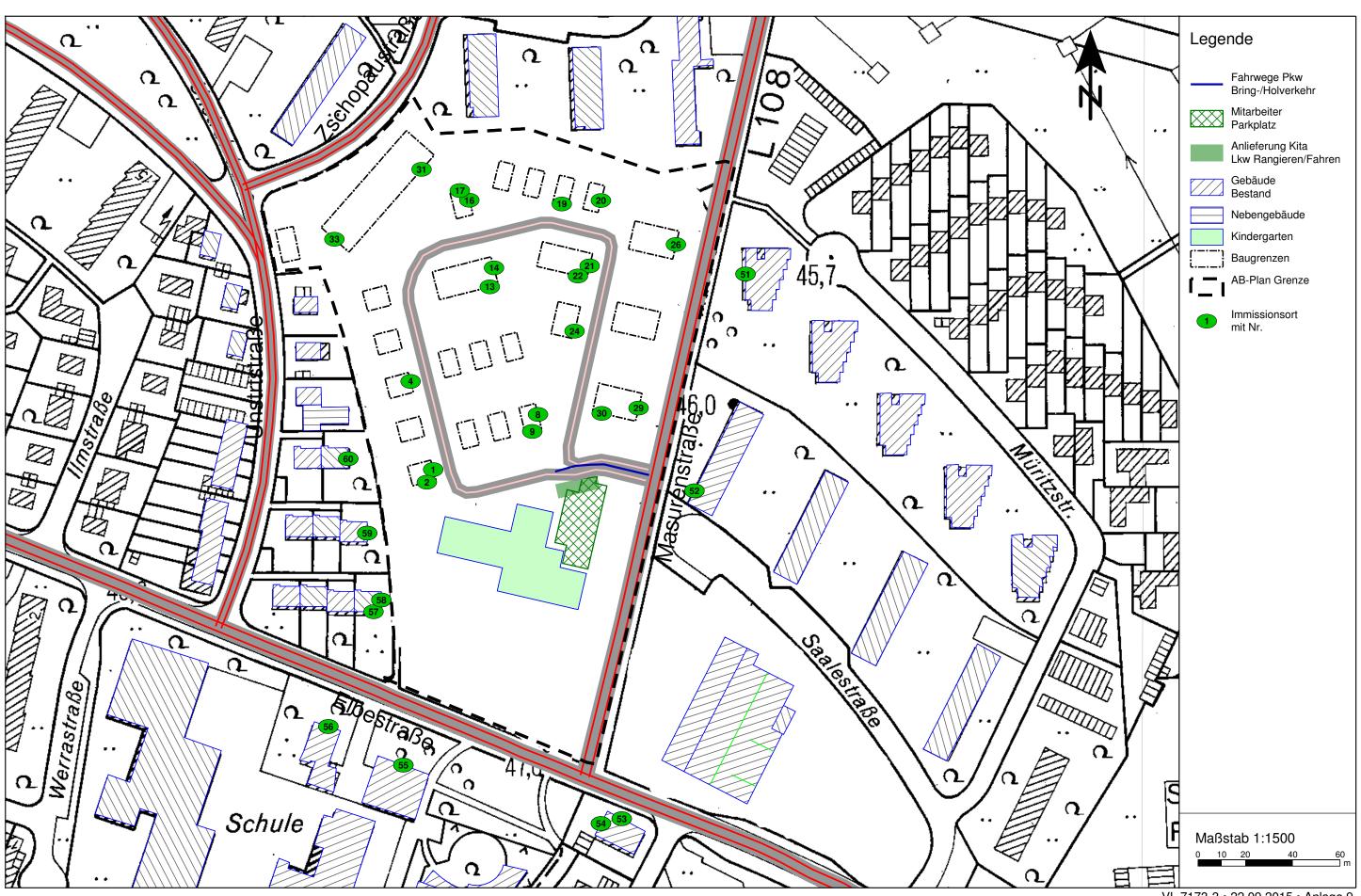


	Immiss	ionspunkt		Gebiets-	Schallted	chnischer			Beurteilu	ngspegel			Überschr	eitung des	Maßgebl.	Lärmpegel-
				einstufung	Orientier	ungswert	Sch	iene	Stra	аве	Sun	nme	Orientieru	ingswertes	Außenlärm-	bereich
IP		Fassaden-	Geschoss												pegel	
		orientierung			Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht		
					dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)		
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
35	WA 3. 1	NW	EG	WA	55	45	49,1	45,3	52,2	46,3	53,9	48,8	-	3,8	57	П
		NW	1.OG	WA	55	45	49,3	45,5	52,8	46,8	54,4	49,3	-	4,3	58	II
		NW	2.OG	WA	55	45	49,0	45,2	53,0	47,1	54,5	49,3	-	4,3	58	II
		NW	3.OG	WA	55	45	49,1	45,3	53,0	47,1	54,5	49,3	-	4,3	58	II
		NW	4.OG	WA	55	45	49,3	45,5	53,0	47,2	54,5	49,4	-	4,4	58	II
36	KITA	W	EG	SOS	55	-	43,1		51,9		52,4		-	-	56	II
37	KITA	N	EG	SOS	55	-	48,5		51,4		53,2		-	-	57	II
38	KITA	N	EG	SOS	55	-	48,6		51,1		53,0		-	-	56	II
39	KITA	N	EG	SOS	55	-	48,8		52,4		54,0		-	-	57	П
40	KITA	0	EG	SOS	55	-	48,6		56,1		56,8		1,8	-	60	II
41	KITA	S	EG	SOS	55	-	41,2		53,9		54,1		-	-	58	II
42	KITA	W	EG	SOS	55	-	43,7		51,6		52,2		-	-	56	II
43	KITA	S	EG	SOS	55	-	42,5		51,7		52,2		-	-	56	II
44	KITA	W	EG	SOS	55	-	43,4		51,6		52,2		-	-	56	II
45	KITA	N	EG	SOS	55	-	48,6		50,3		52,6		-	-	56	II

	Immissionsort			Immis	sions-	Beurte	ilungs-	Überscl	hreitung	zuläs	ssiger	berec	hneter	Übersc	hreitung
		Stock-	Gebiets-	richtwe	ert IRW	peg	el Lr	IR	W	Maxim	alpegel	Maxima	alpegel	Maxim	alpegel
Nr.	Beschreibung	werk	nutzung	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht
				_	3(A)	_	B(A)	_	B(A)	_	B(A)	_	B(A)	•	B(A)
1	WA 1. 6	EG	WA	55	40	36,4	-	-	-	85	60	63,8	_	-	-
		1.0G		55	40	37,5	-	-	- 1	85	60	64,9	_	-	-
		2.OG		55	40	37,6	-	-	- 1	85	60	64,9	-	-	-
2	WA 1. 6	EG	WA	55	40	36,0	-	-	-	85	60	63,5	-	-	-
		1.OG		55	40	37,1	-	-	- 1	85	60	64,5	-	-	-
		2.OG		55	40	37,3	-	-	- 1	85	60	64,6	-	-	-
4	WA 1. 4	EG	WA	55	40	32,7	-	-	-	85	60	60,0	-	-	-
		1.OG		55	40	34,1	-	-	- 1	85	60	61,3	-	-	-
		2.OG		55	40	34,8	-	-	- 1	85	60	62,0	-	-	-
8	WA 2. 3	EG	WA	55	40	42,7	-	-	-	85	60	69,9	-	-	-
		1.0G		55	40	42,8	-	-	-	85	60	69,9	-	-	-
		2.OG		55	40	42,7	-	-	-	85	60	69,8	-	-	-
9	WA 2. 3	EG	WA	55	40	44,1	-	-	-	85	60	71,3	-	-	-
		1.0G		55	40	44,1	-	-	-	85	60	71,3	-	-	-
		2.OG		55	40	43,9	-	-	-	85	60	71,1	-	-	-
13	WA 4	EG	WA	55	40	32,7	-	-	-	85	60	59,8	-	-	-
		1.OG		55	40	33,7	-	-	-	85	60	60,8	-	-	-
		2.OG		55	40	34,3	-	-	-	85	60	61,4	-	-	-
		3.OG		55	40	34,4	-	-	-	85	60	61,5	-	-	-
14	WA 4	EG	WA	55	40	32,5	-	-	- !	85	60	59,6	-	-	-
		1.OG		55	40	33,1	-	-	- !	85	60	60,3	-	-	-
		2.OG		55	40	33,7	-	-		85	60	60,9	-	-	-
		3.OG		55	40	33,9	-	-	-	85	60	61,1	-	-	-
16	WA 2. 7	EG	WA	55	40	31,1	-	-	-	85	60	58,3	-	-	-
		1.OG		55	40	31,5	-	-	-	85	60	58,7	-	-	-
		2.OG		55	40	31,9	-	-	-	85	60	59,1	-	-	-
17	WA 2. 7	EG	WA	55	40	25,0	-	-	-	85	60	52,5	-	-	-
	<u> </u>	1.0G	<u> </u>	55	40	25,7	<u> </u>		-	85	60	53,1	<u> </u>		-

	Immissionsort			Immis	sions-	Beurte	ilungs-	Überscl	hreitung	zuläs	siger	bered	hneter	Übersc	hreitung
		Stock-	Gebiets-	richtwe	ert IRW	peg	el Lr	IR	W	Maxim	alpegel	Maxim	alpegel	Maxim	alpegel
Nr.	Beschreibung	werk	nutzung	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht
				dE	B(A)		B(A)	dE	B(A)	dE	B(A)	dE	B(A)	dE	B(A)
17	WA 2. 7	2.OG	WA	55	40	25,7	-	-	-	85	60	53,1	-	-	-
19	WA 2. 10	EG	WA	55	40	31,1	-	-	-	85	60	58,3	-	-	-
		1.OG		55	40	31,7	-	-	-	85	60	58,9	-	-	-
		2.OG		55	40	32,3	-	-	-	85	60	59,4	-	-	-
20	WA 2. 11	EG	WA	55	40	31,4	-	-	-	85	60	58,5	-	-	-
		1.OG		55	40	31,6	-	-	-	85	60	58,7	-	-	-
		2.OG		55	40	32,0	-	-	-	85	60	59,1	-	-	-
21	WA 5. 1	EG	WA	55	40	33,7	-	-	-	85	60	60,8	-	-	-
		1.0G		55	40	34,2	-	-	-	85	60	61,2	-	-	-
		2.OG		55	40	34,7	-	-	-	85	60	61,7	-	-	-
		3.OG		55	40	34,8	-	-	-	85	60	61,8	-	-	-
22	WA 5. 1	EG	WA	55	40	33,9	-	-	-	85	60	61,0	-	-	-
		1.OG		55	40	34,6	-	-	-	85	60	61,7	-	-	-
		2.OG		55	40	35,1	-	-	-	85	60	62,1	-	-	-
		3.OG		55	40	35,2	-	-	-	85	60	62,2	-	-	-
24	WA 5. 2	EG	WA	55	40	36,8	-	-	-	85	60	63,9	-	-	-
		1.OG		55	40	37,5	-	-	-	85	60	64,6	-	-	-
		2.OG		55	40	37,7	-	-	-	85	60	64,7	-	-	-
		3.OG		55	40	37,7	-	-	-	85	60	64,7	-	-	-
26	WA 6. 1	EG	WA	55	40	28,3	-	-	-	85	60	54,4	-	-	-
		1.OG		55	40	28,0	-	-	-	85	60	54,1	-	-	-
		2.OG		55	40	28,4	-	-	-	85	60	54,5	-	-	-
29	WA 6. 3	EG	WA	55	40	35,3	-	-	-	85	60	58,9	-	-	-
		1.OG		55	40	35,5	-	-	-	85	60	59,5	-	-	-
		2.OG		55	40	35,6	-	-	-	85	60	59,9	-	-	-
30	WA 6. 3	EG	WA	55	40	44,1	-	-	-	85	60	70,8	-	-	-
		1.OG		55	40	44,1	-	-	-	85	60	70,8	-	-	-
	l	2.OG		55	40	44,0	-	-	-	85	60	70,7	-	-	-

VL 7173-3 · 22.09.2015 · Anlage 8.2



	Immissionsort			Immis	sions-	Beurte	ilungs-	Überscl	hreitung	zuläs	siger	berec	nneter	Übersc	hreitung
		Stock-	Gebiets-	richtwe	ert IRW	peg	el Lr	IR	W	Maxim	alpegel	Maxima	alpegel	Maxim	alpegel
Nr.	Beschreibung	werk	nutzung	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht
					B(A)	_	B(A)	dE	B(A)	dE	B(A)	_	(A)	dE	B(A)
31	WA 3. 1	EG	WA	55	40	28,3	-	-	-	85	60	55,6	-	1	-
		1.OG		55	40	29,0	-	-	- 1	85	60	56,3	-	-	- 1
		2.OG		55	40	29,5	-	-	-	85	60	56,7	-	-	- 1
		3.OG		55	40	30,0	-	-	-	85	60	57,2	-	-	-
		4.OG		55	40	30,4	-	-	-	85	60	57,5	-	-	-
33	WA 3. 1	EG	WA	55	40	26,3	-	-	-	85	60	54,1	-	-	-
		1.OG		55	40	27,1	-	-	-	85	60	54,9	-	-	-
		2.OG		55	40	27,8	-	-	-	85	60	55,5	-	-	-
		3.OG		55	40	28,3	-	-	-	85	60	56,1	-	-	-
		4.OG		55	40	28,8	-	-	-	85	60	56,6	-	-	-
51	51 Müritzstraße 9	EG	WA	55	40	31,2	-	-	-	85	60	57,9	-	-	-
		1.OG		55	40	31,7	-	-	-	85	60	58,6	-	-	-
		2.OG		55	40	32,3	-	-	-	85	60	59,1	-	-	-
		3.OG		55	40	32,7	-	-	-	85	60	59,5	-	-	-
52	52 Saalestraße 44-48	EG	WA	55	40	40,3	-	-	-	85	60	66,4	-	-	-
		1.OG		55	40	40,7	-	-	-	85	60	66,9	-	-	-
		2.OG		55	40	40,6	-	-	-	85	60	66,9	-	-	-
		3.OG		55	40	40,5	-	-	-	85	60	66,8	-	-	-
53	53 Insterstraße 2	EG	WA	55	40	27,9	-	-	-	85	60	54,8	-	-	-
		1.OG		55	40	28,1	-	-	-	85	60	55,1	-	-	-
54	54 Insterstraße 2	EG	WA	55	40	27,5	-	-	-	85	60	54,5	-	-	-
		1.OG		55	40	27,9	-	-	-	85	60	54,9	-	-	-
55	55 Käthe-Kollwitz-Schule	EG	SOS	55	-	26,6	-	-	-	85	-	54,0	-	-	-
	501/711 1/4 11 11 0 1 1	1.0G	200	55	-	27,7	-	-	-	85	-	54,9	-	-	-
56	56 Käthe-Kollwitz-Schule	EG	SOS	55	-	26,1	-	-	-	85	-	53,5	-	-	-
58	58 Unstrutstraße 4b	EG	WA	55	40	30,4	-	-	-	85	60	57,8	-	-	-
		1.0G		55	40	32,0	-	-	-	85	60	59,2	-	-	-
	I	2.OG		55	40	33,1	-	-	-	85	60	60,3	-	-	-

	Immissionsort			Immis	sions-	Beurte	ilungs-	Übersch	hreitung	zuläs	siger	berecl	nneter	Übersc	hreitung
		Stock-	Gebiets-	richtwe	ert IRW	peg	el Lr	IR	W	Maxim	alpegel	Maxima	alpegel	Maxim	alpegel
Nr.	Beschreibung	werk	nutzung	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht
				dE	B(A)	dB	B(A)	dB	B(A)	dB	S(A)	dB	(A)	dE	3(A)
59	59 Unstrutstraße 6c	EG	WA	55	40	32,0	-	-	-	85	60	59,4	-	-	-
		1.OG		55	40	33,0	-	-	-	85	60	60,4	-	-	-
		2.OG		55	40	33,8	-	-	-	85	60	61,1	-	-	-
60	60 Unstrutstraße 8b	EG	WA	55	40	31,0	-	-	-	85	60	58,3	-	-	-
		1.OG		55	40	32,2	-	-	-	85	60	59,5	-	-	-
		2.OG		55	40	33,1	-	-	-	85	60	60,4	-	-	-

Auswirkung der Planung auf den Straßenverkehrslärm im Bestand

	Immissionspunk	k t		Gebiets-	Immis	sions-	Beurteilu	ngspegel	Beurteilu	ingspegel	Pegeld	ifferenz		hreitung
				einstufung	gren	zwert							Immission	sgrenzwert
ΙP	Name	Fassaden-	Geschoss				ohne Pl	angebiet	mit Pla	ngebiet			mit Pla	ngebiet
		tierung			Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht	Tag	Nacht
					dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
51	51 Müritzstraße 9	W	EG	W	59	49	57	49	58	49	0,7	0,3	-	-
		W	1.OG	W	59	49	57	50	58	50	0,8	0,3	-	0,4
		W	2.OG	w	59	49	57	50	58	50	0,8	0,3	-	0,4
		W	3.OG	w	59	49	57	49	58	50	0,8	0,3	-	0,3
52	52 Saalestraße 44-48	NW	EG	W	59	49	57	49	58	50	0,8	0,3	-	0,3
		NW	1.OG	w	59	49	58	50	59	50	0,9	0,4	-	0,8
		NW	2.OG	w	59	49	58	50	59	50	0,9	0,4	-	0,8
		NW	3.OG	w	59	49	57	50	58	50	0,9	0,4	-	0,6
53	53 Insterstraße 2	NO	EG	W	59	49	61	52	61	52	0,1	0,0	1,4	2,6
		NO	1.OG	w	59	49	61	52	61	52	0,1	0,1	1,4	2,7
54	54 Insterstraße 2	NW	EG	W	59	49	57	50	57	50	0,1	0,0	-	0,1
		NW	1.OG	W	59	49	58	50	58	50	0,2	0,1	-	0,6
55	55 Käthe-Kollwitz-Schule	N	EG	SOS	57	-	55	47	55	47	0,0	0,1	-	-
		N	1.OG	sos	57	-	57	48	57	48	0,0	0,1	-	-
56	56 Käthe-Kollwitz-Schule	N	EG	sos	57	-	56	48	56	48	0,1	0,0	-	-
57	57 Unstrutstraße 4b	S	EG	W	59	49	55	47	55	47	0,0	0,1	-	-
		S	1.OG	W	59	49	56	48	56	48	0,0	0,0	-	-
		S	2.OG	W	59	49	56	49	56	49	0,0	0,0	-	-
58	58 Unstrutstraße 4b	0	EG	W	59	49	49	40	49	40	0,4	0,3	-	-
		0	1.OG	W	59	49	50	41	50	41	0,4	0,3	-	-
		0	2.OG	w	59	49	51	42	51	42	0,4	0,3	-	-
59	59 Unstrutstraße 6c	0	EG	W	59	49	47	38	47	39	0,8	0,6	-	-
		0	1.OG	w	59	49	47	39	48	39	0,9	0,6	-	-
		0	2.OG	w	59	49	48	39	48	40	0,8	0,7	-	-
60	60 Unstrutstraße 8b	0	EG	W	59	49	46	38	47	39	1,1	0,8	-	-
		0	1.OG	w	59	49	46	38	47	39	1,2	0,9	-	-
		0	2.OG	w	59	49	46	39	48	40	1,3	1,0	-	-

Tabelle 8 der DIN 4109: Anforderungen an die Luftschalldämmung von Außenbauteilen (gültig für ein Verhältnis S_(W+F) / S_G = 0,8)

Spalte	1	2	3	4	5
				Raumarten	•
				Aufenthaltsräume in	
		"Maßgeblicher	Bettenräume in	Wohnungen, Übernach-	Büroräume 1)
Zeile	Lärmpegelbereich	Außenlärmpegel"	Krankenanstalten	tungsräume in	u.ä.
			und Sanatorien	Beherbergungsstätten,	
		dB(A)		Unterrichtsräume u.ä.	
			erf.	. R' _{w,res} des Außenbauteils in dB	•
1	I	bis 55	35	30	-
2	II	56 bis 60	35	30	30
3	III	61 bis 65	40	35	30
4	IV	66 bis 70	45	40	35
5	V	71 bis 75	50	45	40
6	VI	76 bis 80	2)	50	45
7	VII	> 80	2)	2)	50

¹⁾ An Außenbauteile von Räumen, bei denen der eindringende Außenlärm aufgrund der in den Räumen ausgeübten Tätigkeiten nur einen untergeordneten Beitrag zum Innenraumpegel leistet, werden keine Anforderungen gestellt.

 $Tabelle~9~der~DIN~4109:~Korrekturwerte~f\"{u}r~das~erforderliche~resultierende~Schalld\"{a}mm-Maß~nach~Tabelle~8~in~Abh\"{a}ngigkeit~vom~Verh\"{a}ltnis~S_{(W+F)}~/~S_{G}$

Spalte/Zeile	1	2	3	4	5	6	7	8	9	10
1	$S_{(W+F)}/S_G$	2,5	2,0	1,6	1,3	1,0	0,8	0,6	0,5	0,4
2	Korrektur	+ 5	+ 4	+ 3	+ 2	+ 1	0	- 1	- 2	- 3

S_(W+F) / S_G: Gesamtfläche des Außenbauteils eines Aufenthaltsraumes in m²

S_G: Grundfläche eines Aufenthaltsraumes in m²

²) Die Anforderungen sind hier aufgrund der örtlichen Gegebenheiten festzulegen.